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Abstract

We make a detailed examination lwas made of the performance achieved by a Krylov space

sparse linear system solver that uses incompletely factored matrices for preconditioners.

We compared two related mechanisms for parallelizing the computationally critical sparse

triangular solves and sparse numeric incomplete factorizations on a range of test problems.

From these comparisions we drew several interesting conclusions about methods that can

be used to parallelize loops of the type found here.

The performance we obtain is brought into perspective hy comparisons with timing

results from a Cray X/MP supercomputer. Performance on an Encore Multimax/320

with relatively modest computational capabilities comes within a small factor of the per-

formance on a comparable code run on a Cray X/MP. --



1. Introduction

We report the results of a detailed study of the performance obtained in parallelizing a Krylov-

space linear system solver, preconditioned using incompletely factored matrices (PCGPAK ) . We

feel that an understanding of how one proceeds to parallelize such a sparse solver is of intrinsic

interest to researchers and practitioners in scientific computing. We also have found this problem

to be ideally suited for investigating issues that arise in the development of systems for automated

runtime parallelization.

The structure of the matrix describing the sparse linear system to be solved plays a key role in

determining the data dependencies between variables in many loops. Since this matrix is generally

input at runtime or generated during program execution, information concerning data dependencies

found in critical inner loops cannot be ascertained at compile time. A two step method is used

to parallelize the loops in question. In the first step, index sets of the loops are reordered using

a topological sort type algorithm. A new loop structure is produced by modifying the loop to be

parallelized. This new loop structure is designed to make use of the reordered index set. One type

of loop structure partitions the loop into a sequence of fully parallelized do loops that are separated

from one another by global synchronizations. The other loop structure is a generalization of the

doacross loop [31. Instead of using global synchronizations, we require processors to write into a

specified location in an array in shared memory when work pertaining to a given index is completed.

Before a variable value can be used, a processor makes sure that the appropriately updated value has

been calculated by repeatedly checking a designated location in shared memory. This is commonly

called busy waiting.

Topological sorts have been used by a number of researchers to reorder row substitutions and

increase available parallelism [7],[9],[4],41],[10].

We will present and compare in detail the performance that can be obtained in the sparse

linear system solver through the use of these two different types of loops that use the reordered

index set. To fully explain the performance tradeoffs between these loop structures, we need to be

able to quantitatively explain the performance we are observing. We present a set of experiments

and analysis able to account for how time is spent in the two different loop constructions.

These experimental results are put into perspective by showing that the performance we obtain

on a multiprocessor with relatively modest computational capabilities comes within a small factor

of the performance that can be obtained by a comparable code on a Cray X/MP supercomputer.

We will also sketch how the methods used to parallelize loops in these sparse matrix problems



can be generalized. Symbolic transformations can be employed to produce program segments that

reorder index sets and program segments that are able to use the reordered index sets to increase

concurrency. These transformations can be used as the basis for a variety of language extensions,

these extensions can be used to guide a preprocessor in restructuring source codes in ways that

increase parallelism.

2. Preconditioned Krylov Methods Background

We briefly present the basics of Krylov methods such as are found in PCGPAK. The interested

reader may find the details of GMRES(k) in [16] and of the other methods in [2, 8]

Consider a large, sparse, system of linear equations of the form

Mx = b (2.1)

where M is a real matrix of order N, b is a given vector of length N and x is unknown vector

to be computed.

Given an initial guess xo, Krylov methods generate an approximate solution xi from the

translated Krylov space xo + Ki where ro = b - MzO and

Ki C span {ro, Mro, ... , M'-ro}.

xi is usually chosen to minimize some norm of its residual b - Mxi (15].

The basic computational subtasks in Krylov methods are sparse matrix-vector multiplies with

matrix M, additions of scalar multiples of vectors to other vectors (SAXPYs), and vector inner-

products. The latter are used in determining the linear combination of Krylov vectors to add to

the initial guess so as to minimize the norm of the residual.

Preconditioned Krylov methods consist of using an auxiliary matrix Q = QIQ, to first im-

plicity generate the preconditioned system

(QIMQO1)Qx = Q7 1 b

The matrix Q is chosen to be an approximation to M for which it is easy to compute Q 11v and

Q;Iv for a vector v.

Approximate LU factorization preconditioners [8, 6, 11] have been found to have very favorable

convergence properties. Hc:c we take Q to be LU where L is lower triangular and U is upper

triangular. Typically, we form L and U by a process of incomplete factorization in which M is

approximately factored in a way that allows only limited fill to occur.
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The preconditioned matrix-vector multiply in the resulting Krylov method consists of doing a

forward and backward sparse triangular solves using L and U as well as the sparse matrix multiplies

by M. The cost of performing this incomplete factorization and the costs of solving the resulting

triangular systems tends to be much smaller than the costs associated with an exact factorization

h.Cause of the enforced sparsity of the matrices involved.

The computation in PCGPAK is carried out by (1) performing a symbolic incomplete factor-

ization to determine the sparsity structure of L and U, (2) numeric calculation of the incomplete

factorization using the previously calculated sparsity structures and (3) matrix vector multiplies,

SAXPYs, vector inner products and sparse triangular solves.

2.1. The Test Problems

We now present our eight test problems used in our experiments in this paper.

Problem 1 This problem models the pressure equation in a sequential black oil simulation. The

(SPE1) grid is 10 x 10 x 10 with one unknown per gridpoint for a total of 1000 unknowns.

Problem 2 This problem arises from the thermal simulation of a steam injection process. The

(SPE2) grid is 6 x 6 x 5 with 6 unknowns per grid point giving 1080 unknowns. The matrix

is a block seven point operator with 6 x 6 blocks.

Problem 3 This problem comes from an IMPES simulation of a black oil model. The matrix is

(SPE3) a seven point operator on a 35 x 11 x 13 grid yielding 5005 equations.

Problem 4 This problem also comes from an IMPES simulation of a black oil model. The matrix

(SPE4) is a seven point operator on a 16 x 23 x 3 grid giving 1104 equations.

Problem 5 This problem arises from a fully-implicit, simultaneous solution simulation of a black

(SPE5) oil model. It is a block seven point operator on a 16 x 23 x 3 grid with 3 x 3 blocks

yielding 3312 equations.
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Problem 6 This problem is a five point central difference discretization of the following equation

(5-Pt) on the unit square:

a,(-x a U)-a (ea u)+2x+y(a U+a u+(2+ 1 )__x (xXy u) +) (9+ I + X + Y

with Dirichlet boundary conditions and f chosen so that the exact solution is

u = X exy sin(a-z) sin(ry).

The discretization grid is 63 x 63 giving 3969 unknowns. The L5-pt problem is the

same problem with a 200 x 200 grid.

Problem 7 This problem is a nine point box scheme discretization for the following equation on

(9-pt) the unit square:

a92 92u 2 a-- 2 f ----( +- y )+ +2- = f

with Dirichlet boundary conditions and f chosen so that the exact solution is

u - z eZ) sin(rz) sin(,ry).

The discretization grid is 63 x 63 giving 3969 equations. The L9-pt problem is the

same problem with a 127 x 127 grid.

Problem 8 This problem is a seven point central difference discretization of the following equa-

(7-pt) tion on the unit cube:

a(e 9) - 9( 9 69(ex au) + 80(x + y + z)-u + (40 + 1 )U

with Dirichlet boundary conditions and f chosen so that the exact solution is

u = (1 - X)(1 - Y)(1 - z)(1 - e-')(1 - e-V)(1 - e-Z).

The discretization grid is 20 x 20 X 20 yielding 8000 equations. The L7-pt problem

is the same problem with a 30 x 30 x 30 grid.
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3. Parallel Implementations of the Basic Krylov Method

3.1. SAXPY operations, Vector inner-products, and Sparse matrix-vector

The easily parallelizable subprocedures in the preconditioned Krylov methods implemented

here are the SAXPY operations, the vector inner-products and the sparse matrix-vector products.

For p processors and a linear system of order n, the indices from 1 to n are divided into p contiguous
groups of roughly equal size. The ih group is assigned to the ith processor. and the obvious

computations are carried out.

3.2. Parallel Triangular Solves and Sparse Numeric Factorizations

3.2.1. Triangular Solves

The triangular solves and the sparse numeric factorization can often be efficiently parallelized

once the matrix dependent data dependencies are known. Consider the triangular solve in Figure

1. In this and the following figures we use a standard sparse matrix data structure where the non

zeros in a matrix A are stored in a one dimensional array a. For each row i, ija(i) and ija(i+l)-I

represent the locations in array a of the left and rightmost non-zero columns of the row in matrix

A. The column of A corresponding to element j of a is given by ija(j). Rather than sweeping over a

two dimensional array, we sweep over a one dimensional array where dependences are given by the

integer array ija.

The data dependencies between row substitutions indexed by the variable i in that Figure are

determined by the values assigned during program execution to the data structure ija. A value

of the outer loop index i, il has a dependence on another value of the outer loop index i 2 if the

computation of y(il) requires Y(i 2 ).

To parallelize, we first partition the indices of the outer loop of Figure 1 into disjoint sets

Si, such that row substitutions in a set Si may be carried out independently. To obtain the sets

S, we perform a topological sort of the directed acyclic dependence graph G that describes the

dependencies between the outer loop indices. Stage k of this sort is performed by placing into set

S1 all indices of G not pointed to by graph edges. Following this all edges that emanated from the

indices in Sk are removed. The elements of Sk are said to belong to wavefront k. Later, we will

outline an efficient method that can be used to perform this topological sort.

We investigate two related methods of using wavefront information to parallelize the computa-

tions. In both cases, indices belonging to each wavefront are partitioned among the processors. In

the first case, which we call pre-scheduling, global synchronizations separate consecutive wavefronts.
In the other method which we call self-executing, a shared array is used to keep track of whether
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a solution variable has been calculated. Global synchronizations are replaced by busy waits that

make sure that needed values have been produced before those values are used.

A pre-scheduled parallelized triangular solve is shown in Figure 2. The array bywf contains a

reordering of the index set from S1 resulting from the sort. The array wf contains the wavefront

number from the sort; a global synchronization is carried out between consecutive wavefronts.

Figure 3 depicts a self-executing triangular solve, with bywf and wf defined as before. Note

that when processors attempt to simultaneously solve for independent work units, no interprocessor

delays are generated. In both Figures 2 and 3, indices are assigned to processors by assembling

the topologically sorted indices into bywt. Consecutive indices in bywf are assigned to consecutively

numbered processors in a wrapped or striped fashion, i.e., index i is assigned to processor i modulo

P where P represents the number of processors in the machine.

S1 do i=l,n

y(i) = rhs(i)

do j=ija(i), ija(i+l)-l

y(i) = y(i) - a(j)*y(ija(j))

end do

end do

Figure 1: Triangular Solve

3.2.2. Sparse Factorizations

In a straightforward sequential version of Gaussian elimination without pivoting, consecutive

pivot rows i are used to eliminate any non-zeros in column i of all rows i + 1 to N. All non-zeros

to the left of row i's diagonal are eliminated before a i becomes a pivot row. When all non-zeros

to the left of i's diagonal are eliminated, we say that row i has been stabilized.

The elimination or factorization process tends to introduce new non-zeros or fill into the

factored matrix. An approximate factorization can be carried out by selectively suppressing the

creation of many of the non-zeros created during the factorization process. The suppression is

6



do i=proc , n,nurnproc

row =bywf(i)

y(row) =rhs(row)

do j =ij a(row),ij a(row +1)- 1

column = ija(j)
while(ready(columxl).xlediter) endwhile

y(row) = y(row) - vals(j)*Y(column)

end do

ready(row) =ready(row) + 1

end do

Figure 2: Self-Executing Triangular Solve

do i=proc , n,numproc

row = bywf(i)

while(wf(row) .gt .newphase)

newphase= newphase+1

call global synchroization

end while

y(row) = rhs(row)

do j=ija(row), ija(row+l)-l

column =ija(j)

y(rowv) =y(row) - vals(j)*y(column)

end do

end do

Figure 3: Pre-Scheduled Triangular Solve



performed on the basis of determining how indirect the fill was. For instance, all fill created by

eliminations using the first matrix row as a pivot row arise directly from non-zeros present in the

original matrix. However, when row 2 is stabilized, non zeros in row 3 may arise directly from a

non-zero present in the original matrix or may arise as a result from fill from row 2. There are

a variety of methods used to quantify the indirectness of fill; only fill that is sufficiently direct

is retained and is capable of generating further fill. The specifics of the algorithm used here to

determine which elements are to be retained is described in [8, 11].

During the course of the computation, each row i undergoes a number of transformations as

non-zero elements in consecutive columns j < i are eliminated by stabilized pivot rows j. When

all the non zeros in columns j < i have been eliminated, row i itself is stabilized and may be used

as a pivot row in other eliminations.

The incomplete factorization procedure consists of a symbolic a.d a numeric factorization. The

symbolic factorization calculates the non-zero structure of the factored matrix, and the numeric

factorization computes the numeric values for the incompletely factored matrix.

The numeric factorization is parallelized in a way that is analogous to the triangular solve.

Elimination in each row i requires the use of a sequence of stabilized pivot rows identified as

before by the sparse data structure ija. (Figure 4). In parallelizing the numeric factorization,

a topological sort of the dependencies pertaining to the outer loop indices is performed. As was

shown explicitly for the triangular solve, prescheduled and self-executing versions of the numeric

factorization algorithm can be formulated.

Si do i=l,n

do j=ija(i),ija(i+ I)-i

Use pivot row ija(j) to perform elimination on row i

end do

end do

Figure 4: Schematic Sparse Factorization

IS



3.3. Sparse Symbolic Factorizations

Because the pattern of fill is not known a priori, the data dependencies in symbolic factorization

cannot be analyzed before the algorithm executes. In our implementation of the algorithm, we

distribute the rows of the matrix over processors in a wrapped manner and execute in a self-

scheduled fashion.

Since we are computing the incomplete factorizations of sparse matrices, the fill pattern will

be sparse. The columns of row i that are filled in at any given stage of the algorithm are kept

sorted in increasing order in a linked list. Operations on row i with pivot row j require that the

list of non-zeros pertaining to row i be merged with the list of non-zeros pertaining to pivot row j.

Note that because this is an incomplete factorization, some of the non-zero elements in the newly

created merged list may be omitted.

3.4. Efficient Calculation of the Topological Sort

It is possible to perform a particularly efficient topological sort of index sets arising from some

sequential programs such as the ti iangular solve and the sparse numeric factorization. For instance,

in the sparse triangular solve, computation that pertains to row i can only require information

produced by rows having index values less than i. Since the wavefront for each row is one plus the

maximum of the wavefronts of the rows on which it depends, one can simply sweep sequentially

through the rows and calculate the wavefront for each row. This process produces an array wf

defined in Section 3.2. The array wf must then be sorted to produce an execution schedule for

the processors.

On the Multimax/320, the sequential execution time required for both these operations tends

to be slightly less than the cost of a single triangular solve using the same matrix. The topological

sort can be parallelized to a degree by striping consecutive indices across the processors and by

using busy waits to assure that variable values have been produced before being used.

3.5. A Robust Transformation

In the linear solver, we program making the implicit assumption that the sparse data structures

will be initialized in particular ways. In Figure 1, we make the tacit assumption that sparse data

structures a and ija must represent a lower triangular matrix. If ija were any integer array, when

the computation of y(i) requires y(j), j could be greater than or less than i. When j > i, the

value of y(j) that is needed corresponds to the one existing before the loop commences execution.

When one parallelizes these loops, it is vital that the old value of y(j) not be overwritten before it

is needed. To avoid this overwritting, we use separate arrays to store the old and new values of y.

9



This type of data dependence is called an anti-dependence. [13].

Automated transformations must deal with issues such as this one in order to produce correct

code. Issues related to the production of these transformations are addressed in [17]. The self-

executing program analogous to Figure 3, designed to handle this kind of situation is shown in

Figure 5.

do i=proc , nnumproc

row = bywf(i)

ynew(row) = rhs(row)

do j=ija(row), ija(row+1)-1

column = ija(j)

if(column .gt. row) then
ynew(row) = ynew(row) - v'.s(j)*yold(column)

else
while(ready(column).ne.iter) endwhile

ynew(row) = ynew(row) - vals(j)*ynew(column)

endif

end do

ready(row) = ready(row) + 1

end do

Figure 5: Generalized Triangular Solve

Programs which reordered index sets of loops can also be produced from source codes by

s3-bolic tr=:formations. These reordered index sets are executed by transformed source code

loop structures. In [18] we describe in some detail the properties of loops amenable to various

kinds of runtime scheduling and the transformations required to parallelize those loops.

4. Analysis of a Model Problem

Ve will use a model problem to illustrate the difference in performance of pre-scheduling

and self-execution. We will examine this by estimating the time that would be required to solve

a lower triangular system generated by the zero fill factorization of the matrix arising from a

rectangular mesh with a five point template. We will use a m by n domain and p _< min(m. n)

processors. We will explicitly take into account only floating point and synchronization related

computations. In Section 5.2 we demonstrate experimentally that these assumptions can be used

to predict multiprocessor timings rather accurately.

10



We assume that all computations required to solve the problem would require time S on a

single processor, and that computation of each point takes time TPo,t = S/(mn); This ignores the

relatively minor disparities caused by the matrix rows represented by points on the lower and the

left boundary of the domain.

$",2 5 5 ',2

Sorted ~ist - ( 1,2,8,3,9, 15,4,1!O,1!6,22,5,1 1 ,1!7,23,29,
6,1 2,1! 8,24,350,7,1! 3,1 9,25,3I, 14,20,26,352
21,27,33:,28],34,355)

Figure 6: Assigqnment of Indices to Wavefronts

To understand the relative performance of the two synchronization mechanisms on this prob-

lem, we need to make clear how the indices are mapped onto the machine's processors. The global

topological sort prod~uce a list of indices sorted by wavefront. The points in a wavefront; arise from

an antidiagonal strip of the domain. For instance, in Figure 6, we depict a five by seven domain

with the points in each wavefront linked by an antidiagonal stripe. When the points in the domain

ae naturally ordered the topological sort produces a list L that picks points on the anti-diagona~l

strip going from the upper right point in the strip to the lower left point. This corresponds to

arranging the points in each wavefront in order of increasing index number.

The indices in L are assigned in a wrapped manner, as depicted for using 3 processors in the

example problem in Figure 7. When prescheduling is used, the computation is divided into phases

sepaated by global synchronizations.

A brief inspection of Figure 6 makes it clear that n + m - 1 phases are required to complete

the computation. Define AI{C(j) as the ma..'amum number of points computed by any processor

during phase j. The computation time required to complete phase j is equal to T~, MC(j). The

11
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We now p d t

durig phse . Dutoiheuraped Assignment of strips to Processors

10m-1
We nw pocee tocigurae 7: j) Assigmngo Indis, totarof ors msecmue

when I < j < rain(m, n). Since the strips are assigned in a wrapped manner,

McUy) - 1.

When rain(m, n) <5 j <5 n + m - rain(m, n), a total of rain(m, n) points must be completed

during phase j. Due to the wrapped assignment of strips to processors,

MC(j) = min(m. n)

P

Finally when n + m - rin(m, n) < j _ n + rm - 1, a total of n + m - j points must be computed

during phase j so

MC'j) = in + m -j.

P
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The computation time required to complete the problem is

n+m-1

Tc = Tpoin, E MC(j)
j=1

mininmmn)--+

S( 1 + (n + m-2min(m,n) +1)
mn * P pp

+- n + m - j1 _

j=m+n-rn(m,n)+ l P

By assumption, the sequential time to solve the problem is S = mnTine. The estimated efficiency

E we could achieve in the absence of any source of inefficiency unrelated to load imbalance would

be rT or

min~mn)-1min(m, n)
mn( f r-i +(n +m - 2min(m, n) +1)[f - 1+

n+m-1

.i=m+na-min(m,n)+1

We can derive a simpler expression that approximates E,0 pt by estimating the total amount of

time all processors spend idle due to load imbalance. Let 7n and ht be equal to the largest multiples

of p that are smaller than m and n respectively. During any phase j : min(m, n) - 1 when j is

not a multiple of p, there are p - j mod p processors idle. When j is a multiple of p, no processors

are idle. Thus the cumulative processor idle time for j < min(th, fi) - 1 is:

Tp=nint min(ih, fi) EP, (I- 1) - Tpi, min(h, f)(p - 1)

p 2

Through similar reasoning, the sum of the processor idle time for the last min(rh, fi) - 1 phases is

the same.

Between the first and last min(m, n) - 1 phases if min(m, n) is equal to p, no time is wasted,

otherwise the time lost per phase is

L.. = Tp.ont(P - min(m, n)mod p)

We can use the above considerations to estimate the cumulative time wasted by all processors, and

use this estimate to calculate the following approximate expression which gives Eo =

mn

mn + min(rf, ft)(p - 1) + (m + n + 1 - 2 min(rh, fi))((p - min(m, n)) mod p)

13



Much of the load imbalance we observe above can be corrected. The failure to balance is

essentially an end effect; e.g., the phase has p + 1 work units with equal computational demands,

but only p processors are available. In [5] we rearranged the global synchronizations in a way that

obtained a tradeoff between improved load balance and the costs of the global synchronizations.

While that mechanism was shown to be advantageous for some problems, rearrangement of the

global synchronizations does require an extra stage of preprocessing.

Self-execution also eliminates these end effects. In the model problem we are presenting here,

we can see that any given row substitution in a wavefront requires only two solution values from

the previous wavefront. It is possible to concurrently compute row substitutions in consecutive

wavefronts provided that we observe dependences. This is taken care of naturally since the self-

execution busy wait synchronization mechanism ensures that dependences are in fact observed.

Figure 8: Data Dependencies Between Indices

Figure 8 depicts the data dependences between row substitutions in the model problem.

Assume that solution values are available for indices in list L through the index corresponding to

wavefront w, domain strip 5. All indices in L up to the index corresponding to wavefront w + 1,

domain strip s will have their dependences satisfied and can be concurrently calculated.

Ve can derive an expression for Ept for the self-executing case, here again we assume that

we employ p < rin(m, n) processors to solve the moael problem. Assuming again that the time

required to compute the solutions is identical for all indices, only the first and last p- I wavefronts

14



contribute to load imbalance. By arguments similar to those made for the pre-scheduling case, the

cumulative processor idle time is p(p - 1). Eopt is thus given by

mn + p(p- 1)

If Tach is the cost of a single global synchronization, the time required to synchronize the pre-

scheduled computation is Tynh times the number of synchronization needed, i.e. T8vnrh (n + m - 1).

The self-executing program ensures global synchronization by incrementing elements of a shared

array when variables are calculated. As described earlier, the shared array is checked to find out

which variables have been solved for at any given time. The cost of incrementing the array elements

is given by Tincmn, where Tint is the cost of incrementing a single array element. Since computing

each solution value is assumed to need two other solution values, the cost of checking the array

elements is estimated by 2Tcheckmn, where Tcheek is the cost of checking a shared memory location.

Note that we have accounted separately for idle time due to load imbalance; we assume here that

we only have to verify that a required solution value is available.

By modifying the above expressions for Elpt to include the synchronization overheads, we

derive an expression for the ratio between the time required to solve the model problem using

pre-scheduling to that required for solving the problem using self-execution, Rp_,. In the following

expression, Rynch = T , i and Rcheck-Tpo.nt f,1.n R ill= p.

R,. = [mn + (L.a + 2Ltr)/Tp + R.anh(n + m - 1)][mn(1 + Rinc + 2 Rcheck) + p(p - 1)1-1

For large n and m = p + 1, we expect to find that slightly under half of the processors are idle

due to load imbalance. The above ratio in the limit of large m becomes

2p + RYnCh

(p + 1)(1 + R + 2Rcheck)"

The above expression suggests that the self-executing program might be expected to perform

substantially better than the pre-scheduled program as long as it is relatively inexpensive to check

and to increment shared memory. In practice, one often obtains triangular systems that have a

relatively large number of phases with modest amounts of work to be performed in each phase, as

we will see in Section 5.2. The limit derived above sheds some ir.sight into these cases.

For m = n the situation is quite different; as n increases we obtain the ratio

1

1 + Rinc + 2 Rcheck

15



If the problem size increases in both dimensions, the relative contribution of the end effect load

imbalances diminish. The amount of computation to be performed grows as mn while the number

of global synchronizations needed grow as n + m - 1. In this case, pre-scheduling is preferable to

self-execution. In shared memory machines with fast access to shared memory, there will be only

a small difference between the pre-scheduled and self-executing times.

Many problems of practical interest are somewhat less sparse than the model problem analyzed

here. When such a problem is to be solved using many processors, we may expect dramatic

performance differences between pre-scheduled and self-executing programs. To illustrate this, we

present the rather extreme (from our point of view) example of solving a n by n dense triangular

matrix having unit diagonals using n- I processors. Assume T 0.p, is the time required for a floating

point multiply and add. The computation time required to solve this system using self-execution

is T, axpv(n - 1). No parallelism at all is obtained when one attempts to solve such a system when

row substitutions are separated by global synchronizations; each row substitution forms its own

wavefront. The sequential computation time and the pre-scheduled computation time are both

T axp ( 2  . Calculated only on the basis of load balance, the self-executing efficiency Evt is
n while the pre-scheduled Ept is 1(-n-I)n-

5. Experimental Results

5.1. Sequential Timings

In this section, we present benchmarks for solutions of the test problems discussed in Sec-

tion 2.1. There are a number of parameters that can be specified when a Krylov space solver such

as PCGPAK is employed. Two principal parameters are the degree of fill used in the incomplete

factorization and whether the original matrix is used in the iterations or whether an equivalent

smaller, denser system, i.e., a reduced system is employed.

We present results for the parameters that have been found to be best for solving systems

with sequential PCGPAK in Table 1. The results presented in this paper are for the Encore

Multimax/320 with 13 megahertz APC/02 boards and version 2.1 of the FORTRAN compiler.

This table is is divided into five broad categories, showing the method and preconditioner used,

the iteration count needed to reach the stopping criteria; the percentage of CPU time spent in

the reduced system computation when that methodology was used; the percentage of time spent

forming the preconditioner; and the percentage of time spent in the various subtasks of the basic

preconditioned algorithms. The column labeled "SAXPY and SDOT" corresponds to item 2 of

the basic tasks. These computations involve adding a scalar multiple of one vector to another
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vector (SAXPY operation) and computing vector inner-products (SDOT operation). The stopping

criteria used was to reduce the Euclidean norm of the residual by six orders of magnitude, starting

with an initial guess of 0.

Test GM Precond- Number Reduced Factor- MVP SAXPY Total
Problem RES itioner Iter- System ization Solves and Time

(K) ations SDOT (seconds)
SPE1 1 ILU(0) 26 17 6 26 33 17 3.6
SPE2 1 ILU(0) 11 - 23 31 37 9 10.1
SPE3 10 MILU(0) 24 15 11 25 28 20 24.1
SPE4 10 ILU(0) 17 21 12 22 26 19 3.1
SPE5 20 ILU(0) 43 - 2 17 22 59 64.0
5-PT 5 MILU(0) 20 17 6 23 30 23 17.6
9-PT 10 ILU(2) 20 - 20 18 38 24 47.9
7-PT 1 ILU(0) 20 - 6 28 38 27 46.4
LS-PT 4 MILU(0) 54 8 3 27 34 28 410.7
L9-PT 10 ILU(1) 80 - 5 22 37 36 603.3
LT-PT 1 ILU(0) 31 - 4 29 39 28 239.9

Table 1: Breakdown of Times for single processor PCGPAK on the Encore Multimax/320 with APC-02s

These results show that the sparse matrix-vector products occupy roughly 20% to 30% of the

CPU time, the sparse triangular solves occupy roughly 20% to 40% of the time, and the SAXPY and

SDOT operations take from 25% to 40% (with the exceptions of SPE2 (10%) and SPE5 (59%)).

When reduced system preprocessing is used, it takes from 7% to 18% of the CPU time. The

formation of the preconditioner takes from 1% to 12% of the time (except for SPE2 (23%)). Thus,

matrix-vector products, sparse triangular solves, and SAXPY and SDOT operations dominate the

total CPU time.

All these experiments used the "right-oriented" preconditioning, i.e. the preconditioned prob-

lem was

MQ-Ii = b, X = Q 1 i

where M is the coefficient matrix and Q is the preconditioner. The initial guess was zo - 0.
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5.2. Multiprocessor Timings

Two versions of parallel PCGPAK were produced. In the first version, the triangular solves

and the numeric factorization were implemented using self-scheduling; while in the second version

the triangular solves and numeric factorization were pre-scheduled. In both cases, the index set of

the outer loop of the appropriate procedure was partitioned as described in Section 3.2.

Test Problem Prescheduled Self-executing Sort Time

Time Efficiency Time Efficiency Time
SPEI 1.48 14 0.83 25 0.03
SPE2 - 2.49 24 1.63 37 0.26
SPE3 3.84 35 3.11 44 0.11

SPE4 1.04 17 0.66 26 0.03
SPE5 6.18 62 5.89 65 0.10
5-PT 3.11 33 2.50 41 0.14

9-PT 6.31 42 4.76 56 0.25

7-PT 4.90 57 5.41 52 0.19

L5-PT 41.76 50 37.93 56 1.40
L9-PT 64.01 54 54.74 63 0.80
L7-PT 23.20 62 23.51 61 0.79

Table 2: Times and Efficiencies for PCGPAK 16 Processors of the Encore Multimax

In Table 2 we present time required to solve the test problems for the pre-scheduled and

self-executing versions of PCGPAK, along with the with the parallel efficiencies achieved. Parallel

efficiency is defined as the ratio between the time required to solve a problem by an optimized

sequential version of PCGPAK and the product of the time required on the same problem by

the multiprocessor code multiplied by the number of processors. The self-executing version of the

program yields the highest efficiencies and the lowest times for all test problems except the small

and 1 ,:Se problems using the seven point operator (7-PT and L7-PT). For many of the problems,

the timing differences in favor of the self-executing version of the code are quite substantial. In the

SPE problems 1, 2 and 4 the self-executing version PCGPAK completes in less than 70 percent of

the time required by the prescheduled version.

Overheads in the self-executing version of the program arise from the need to check and
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Test Time Prescheduled Self-executing
Problems Ratio Solves Iterative Numeric Solves Iterative Numeric

SPE1 1.78 0.56 1.02 1.27 0.22 0.47 0.52
SPE4 1.58 0.32 0.53 0.60 0.14 0.34 0.40
SPE2 1.52 0.60 1.02 1.27 0.40 0.83 1.12
9PT 1.33 3.07 4.66 5.10 1.66 3.15 3.58
5PT 1.24 1.17 1.86 2.08 0.60 1.26 1.48

SPE3 1.23 1.48 2.39 2.73 0.78 1.67 2.01
L9PT 1.17 35.20 58.19 59.91 25.93 48.87 50.20
L5PT 1.1 16.90 30.11 32.05 13.00 26.31 28.24
SPE5 1.05 2.20 5.72 5.86 1.66 5.16 5.31
L7PT 0.99 11.02 20.55 21.57 11.09 20.94 21.93
7-PT 0.90 2.24 4.16 4.46 2.20 4.24 4.53

Table 3: Self Execution vs Prescheduling for PCGPAK 16 Processors of the Encore Multimax

update the shared array which indicates whether needed solution variables or pivot rows have been

computed. In the prescheduled version of the program, overheads arise from the cost of global

synchronizations. Overheads aside, the parallelism available from the self-executing version of the

program is always better than in the pre-scheduled version.

In Section 6, we will explain the differing relative performance between the prescheduled and

self-executing versions of PCGPAK. This will be done by showing that for the test problems, we

can account in a quantitative manner for the timing differences between pre-scheduled and self-

executing versions of the triangular solves. We also present in Table 2, the times required to

perform the topological sort for each of the test problems, which turn out to be extremely small,

compared to the total execution time.

In Table 3, we depict the times required for different portions of the linear solver for both

prescheduled and self-executing programs. We present the times required for performing the tri-

angular solves, the iterative portion of the calculations and all non-symbolic portions of the calcu-

lations. We also calculated the ratio of time for the self-executing calculation to the time required

to perform the prescheduled computation. That ratio is presented in Table 3 and the test prob-

lems are listed in descending order of that ratio. In Table 4 we present a detailed breakdown of
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efficiencies for the self executing version of the program.

The iterative and numeric efficiencies are of interest since one expects to see performance close

to the iterative efficiencies in a slowly converging problem with structure similar to the various test

problems. One would expect to see performance close to the numeric efficiencies in systems arising

from a non-linear or time dependent problem where the systems to be solved during any given step

of the algorithm do not change in symbolic structure.

Test Triangular Iterative Numeric Symbolic Total
Problem Solves Efficiency Efficiency Efficiency Efficiency
SPEl 31 36 37 09 25
SPE2 44 53 50 23 37
SPE3 47 63 61 12 44
SPE4 30 37 37 10 26
SPES 47 72 71 30 65
5-PT 46 62 62 12 41
9-PT 55 69 68 25 56
7-PT 43 60 60 31 52

L5-PT 52 71 71 12 56
L9-PT 47 68 67 16 63
L7-PT 45 65 64 32 61

Table 4: Self-Executing Efficiencies on the Multimax/320

The efficiencies for the triangular solves were in the neighborhood of 50 percent for all but

SPE1, SPE2 and SPE4. For all problems besides for those three, the efficiencies for the iterative and

numeric portions of the solver were at least 60 percent. The problems SPEl, SPE2 and SPE4 are

quite small. From Table 1 we see that the sequential execution times required for these problems

are markedly smaller than for any of the other problems tested.

5.3. Vector Processor Comparisons

Timings were performed on a single head of a Cray/XMP using a version of PCGPAK written

in FORTRAN77 [14] compiled with version 1.3 of the CFT77 compiler, no compiler directives were

used. In Table 5 we present the timings for various portions of PCGPAK on the Cray X/MP. We
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Test Problem Solves Iterative Numeric Total
Time Ratio Time Ratio Time Ratio Time Ratio

SPE1 0.063 3.5 0.098 4.8 0.114 4.6 0.127 6.4
SPE2 0.085 4.7 0.138 6.0 0.186 6.0 0.195 8.2
SPE3 0.252 3.1 0.390 4.3 0.516 3.9 0.600 4.7
SPE4 0.034 4.1 0.055 6.2 0.073 5.5 0.088 7.3
SPE5 0.600 2.8 0.940 5.5 0.976 5.4 0.984 5.9
5-PT 0.302 2.0 0.467 2.7 0.557 2.7 0.622 4.0
9-PT 0.603 2.8 0.935 3.4 1.067 3.4 1.365 3.5
7-PT 1.191 1.8 1.823 2.3 1.895 2.4 1.918 2.8
L5-PT 6.897 1.9 10.405 2.5 11.248 2.5 11.856 3.2
L9-PT 9.011 2.9 13.608 3.6 13.954 3.6 14.749 3.5
L7-PT 5.968 1.9 9.037 2.3 9.280 2.4 9.358 2.4

Table 5: Cray X/MP Times and Ratios of Multimax/320 to X/MP Times

also present ratios of the Multimax time using the self-executing multiprocessor code to the time

on the Cray.

The timings and ratios are presented for the triangular solves, the iterative portion of the

program, for the numeric portion of the program and for the entire program. As expected, the

Multimax/320 program performed comparatively well on the triangular solves, with the Cray rang-

ing from 1.8 to 4.7 times as fast as the Multimax on this portion of the code. While sparse

triangular solves do not vectorize well, they parallelized relatively efficiently (Table 4). Matrix

vector multiplies, SAXPYs and inner products vectorize and parallelize extrememly well. Since the

peak computation rate of a single Cray X/MP processor is substantially greater than the combined

computational capabilities of the 16 Multimax/320 processors, the ratios between the Multimax

and Cray times ar, higher for the iterative times than for the triangular solves. The ratios of the

numeric times were comparable to the ratios for the iterative times. The ratio of the total times

were in some cases markedly higher than any of the other ratios. The symbolic computation par-

allelized quite poorly (Table 4). While the symbolic computations also vectorize poorly, the high

scalar speed of the Cray X/MP was apparently decisive here.

The Cray times obtained using compiler directives were smaller than those obtained without
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the use of directives by a factor of two to three. It seems evident that a shared memory machine

built from relatively simple processors is able to achieve performance that is within a reasonable

factor of a supercomputer.

6. A Detailed Performance Analysis

The multiprocessor results presented in Section 3 indicate that self-executing programs ap-

pear to run more efficiently on most of the test problems we have examined. In this section

we will examine in detail the sources of inefficiency occurring in both prescheduled and the self-

executing programs. This analysis will shed insight into the performance tradeoffs encountered in

self-executing and prrscheduled methods. This information will also be used to make projections

concerning the efficiency that could be obtained by the use of these methods on a larger shared

memory multiprocessor.

6.1. Where Does the Time Go

We performed an operation-count based analysis of the parallelism that could be obtained

given a particular assignment of indices to processors. The analysis made the assumption that the

load balance could be characterized solely by the distribution and scheduling of the floating point

operations. The efficiency estimated on this basis will be called the symbolically estimated efficiency.

In Tablc' 6 and 7 respectively, are depicted symbolically estimated efficiencies for self-executing

and prescheduled triangular solves. The estimates presented are for some of the previously discussed

test problems on 16 processors. The parallelism we anticipate obtaining through the use of self

executing code is better, frequently by a wide margin.

The efficiencies predicted by operation count based analysis are substantially higher than those

we saw in Section 3. This is not surprising since the symbolically estimated efficiencies do not

take into account a number of important sources of overhead. We wiU demonstrate that we can

account for these overhead sources in a systematic way and use these overhead values to accurately

predict the multiprocessor timings in both self-executing and pre-scheduled versions of a standalone

program for paralleling a sparse lower triangular solve.

In Table 6 and 7 we have the actual multiprocessor timings on 16 processors for lower trian-

gular solves arising from the incompletely factored test problem mat ,ices. An optimized sequential

version of the program was also timed for each of the lower triangular systems. We depict sequen-

tial times divided by the product of the number of processors used and the symbolically estimated

efficiencies (timings are denoted by Ideal SU: best seq. in Tables 6 and 7).

The estimates of multiprocesso- times obtained in the estimate above are quite optimistic.
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To take into account the extra operations that had to be executed by the parallel version of the

program, we timed the multiprocessor program on a single processor. Tables 6 and 7 show the

single processor parallel code timing divided by the product of the number of processors used and

the symbolically estimated efficiencies (Ideal SU:1 PE Par.). In performing this calculation, we

tacitly assume that load balance effects of the distribution of work in the multiprocessor program

can still be estimated by taking into account only the distribution of floating point calculations.

In effect, we are assuming that the effect of the extra operations required in the multiprocessor

program could be explained by simply adding a fixed overhead to each floating point operation.

Contention for resources such as shared memory and bus access can cause inefficiencies that

are not accounted for by the above estimates. We ran a version of the multiprocessor code designed

to simulate the memory and communications access patterns of the actual program. This version of

the code is designed to have a perfect load balance. When executed on P processors this program,

executes the schedules a total of P times. Each processor ends up executing the schedules assigned

to all processors so that each processor ends up computing the work associated with all of the indices

in the problem. The time required for this program to complete is called the rotating processor

time because each processor takes on the work assigned to each other processor with control being

shifted in a rotating fashion.

No synchronization takes place in this version of the code. The shared array reads and writes

used in the busy wait coordination in the self executing code still take place but the program is

modified so that no waiting actually has to occur. In the prescheduled version of the program,

global synchronizations are not employed. In the absence of resource contention, we would expect

that the time required for the above computation would be very close to the time spent running

the parallel version of the codes on a single processor.

In the self-executing case, the time estimate obtained from dividing the rotating processor

time by the product of the number of processors and the symbolically estimated efficiency gives

a very close estimate of the actually observed multiprocessor time (Rotating Estimate). For the

prescheduled case, we must include the time required for the global synchronizations to obtain an

accurate prediction of the actual multiprocessor time (Rotating Estimate + Barrier). When this

is done, we get a very good estimate of the pre-scheduled multiprocessor timings. In using the

symbolically estimated efficiencies, we again make the tacit assumption that the extra overhead

(except the global synchronizations) could be explained by adding a fixed overhead to all floating

point operations. Note that while more sophisticated models of overhead are certainly possible
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and may be desirable in some cases; we find here that these simple techniques and assumptions

adequately explain the timings we observe.

The sources of the timing differences between prescheduled and self-executing programs be-

comes more apparent in comparing Tables 6 and 7. For the 5-PT and SPE2 test problems, the

difference in the load balance obtainable through the use of prescheduled and self executing codes

is large enough that the I PE Seq time for the prescheduled code is greater than the Parallel Time

for the self executing program. Even if we had a hypothetical prescheduled code with no overheads

except for load imbalance, that code would still be less efficient than the self executing program.

Recall that the prescheduled program uses global synchronizations in between each phase but

does not need to write into a shared array to keep track of which variables have been calculated.

In a reasonably large problem such as 7-PT where there are relatively few global synchronizations,

the overhead required for prescheduling is relatively small. Since little loss due to load imbalance

is seen for 7-PT, we are able to see that prescheduling gives a slightly better timing.

Test Phases Symbolic Parallel Rotating Ideal SU: Ideal SU: Sort
1 PE best Sort

Problem Efficiency Time Estimate Parallel Seq. Time
SPE2 60 0.89 20.7 20.0 17.9 15.0 41.9
SPE5 66 0.96 23.4 21.6 18.5 15.3 94.6
5-PT 124 0.95 18.7 17.6 14.5 12.2 71.1
9-PT 311 0.97 57.9 57.1 51.7 43.2 153.1
7-PT 58 0.98 56.3 57.6 45.1 38.1 237.1

Table 6: Parallel Time and Estimates for Self Executing Triangular Solves

6.2. Timing Projections

Since we can accurately account for the execution time in the Encore N\ultimax, it is reason-

able to make some timing projections. These projections make the assumption that the costs of

synchronization, the costs from the extra operations required tc run the parallel versions of the

codes and the costs due to contention do not change with the number of processors. If the load
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Test Phases Symbolic Parallel Rotating Rotating Ideal SU: Ideal SU:
I PE best

Problem Efficiency Time Estimate Estimate Parallel Seq.
+ Barrier

SPE2 60 0.52 32.7 32.8 30.0 26.6 25.6
SPE5 66 0.70 29.0 29.5 26.4 22.6 20.8
5-PT 124 0.61 31.1 31.0 25.2 20.2 18.8
9-PT 311 0.78 80.3 83.9 63.5 56.7 53.9
7-PT 58 0.94 56.2 56.3 53.7 44.0 39.8

Table 7: Parallel Time and Estimates for Prescheduled Triangular Solves

balance were perfect, the Best efficiencies in Table 8 would be obtained. (Note that in Table 8,

S.E. is used to indicate self executing synchronization and P.S. is used to represent prescheduled

synchronization).

The estimate of non-load balance related loss (Best in Table 8) obtained from timings on 16

processors is clearly not valid for larger machines if we simply add more processors to the current

machine. The estimate is reasonable if we assume that the capabilities of the shared resources -uch

as interprocessor communication are engineered to scale with the size of the machine.

It is clearly easier to assure performance characteristics that scale with the number of processors

if one designs machines with distributed memory or a hierarchical shared memory. We are currently

extending projections such as these to those types of machines, that work is bcyond the scope of

this paper but some discussion of that issue can be found in [12].

In Table 8, we present efficiencies for 16 processors and projected efficiencies for 32 and

64 processors. The projected performance of the prescheduled programs deteriorates much more

rapidly as one increases the number of processors. This difference is driven by the increasing

disparity between symbolically estimated efficiencies in the two scheduling methods. The differences

seen in the Best efficiencies in Table 8 reflect the varying relative costs of global synchronizations

and array writes in problems with different structures, this issue was discussed in Section 6.2.
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Test Best 16 Processors 32 Processors 64 Processors
Problem S.E. P.S. S.E. P.S. S.E. P.S. S.E. I P.S.

SPE2 75 78 67 40 58 25 45 12
SPE5 65 71 62 49 56 39 46 23
5-PT 65 61 52 27 55 30 34 15
9-PT 76 64 73 52 68 26 39 12
7-PT 66 70 65 66 64 62 60 55

Table 8: Estimated Efficiencies for Larger Machines

7. Conclusion

We have performed a detailed performance study of a powerful commercially available linear

system solver. Two mechanisms were presented for parallelizing the critical inner loops of the

computation, the method of pre-scheduling and of self-executing. Both mechanisms parallelization

require reordering of the the index set of the loop. The methods differ in how to carry out the

computation that will be performed using the reordered index set. The sources of time losses on the

multiprocessor were examined in considerable detail so that the effects of the different parallelization

mechanisms could be dearly understood.

The self-executing mechanism allows for more parallelism than the pre-scheduling method.

Overhead in the self-executing mechanism arises from the busy wait synchronizations used, in the

pre-scheduling mechanism overhead comes from global synchronizations. Both methods required

extra array references to access the reordered index sets. On balance, the self executing method ex-

hibited superior performance on most test problems. On problems with few global synchronizations

and ample potential concurrency, the performance of the prescheduled method was comparable or

slightly superior to the self-executing method.

The performance we obtain was brought into perspective by comparisons with timing results
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from a Cray X/MP supercomputer. Performance on an Encore Multimax/320 with relatively

modest computational capabilities came within a small factor of the performance of a comparable

code run on a Cray X/MP.
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